博客
关于我
狂神JUC——CountDownLatch,CyclicBarrier,Semaphore
阅读量:511 次
发布时间:2019-03-07

本文共 2385 字,大约阅读时间需要 7 分钟。

CountDownLatch、CyclicBarrier与Semaphore:A Java多线程同步技术分析

在Java多线程编程中,CountDownLatch、CyclicBarrier以及Semaphore是三大核心的同步控制工具,它们各自在不同场景下发挥着重要作用。本文将从理论与实践角度,分析这三者各自的特点及其应用场景,并通过实际代码示例展示它们的使用方法。

CountDownLatch

CountDownLatch 是一个可重入同步机制,允许多个线程在不同的时间点等待基准事件完成。一旦基准事件发生,所有等待的线程都会立即被唤醒,并继续执行后续任务。

以下是一个典型的用法示例:

public static void main(String[] args) throws InterruptedException {    CountDownLatch countDownLatch = new CountDownLatch(5);    for (int i = 1; i <= 6; i++) {        new Thread(() -> {            System.out.println(Thread.currentThread().getName() + "go out");            try {                countDownLatch.await();            } catch (InterruptedException e) {                e.printStackTrace();            }        }, String.valueOf(i)).start();    }    countDownLatch.await();    System.out.println("Close Door");}

运行结果显示,所有线程均正确执行,门禁系统按预期关闭。


CyclicBarrier

CyclicBarrier 是一种允许多个线程组成的循环关卡,支持线程在一系列阶段间幕间等待。有时称为" Barney doors",其原理是所有线程必须完成指定阶段后才能继续下一阶段任务。

一个典型的应用示例如下:

public static void main(String[] args) {    CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {        System.out.println("Summon Dragon");    });    for (int i = 1; i <= 7; i++) {        final int temp = i;        new Thread(() -> {            System.out.println(Thread.currentThread().getName() + "Collect第" + temp + "个龙珠");            try {                cyclicBarrier.await();            } catch (InterruptedException e) {                e.printStackTrace();            } catch (BrokenBarrierException e) {                e.printStackTrace();            }        }, String.valueOf(i)).start();    }}

运行结果表明,所有线程正确地收集了所有的龙珠。


Semaphore

Semaphore 是一个信号量机制,用于限制并发访问共享资源。它通过颗粒式许可证来管理共享资源的访问数量,确保线程不会无限制地抢占资源。

一个典型的代码案例:

public static void main(String[] args) {    Semaphore semaphore = new Semaphore(3);    for (int i = 1; i <= 6; i++) {        new Thread(() -> {            try {                semaphore.acquire();                System.out.println(Thread.currentThread().getName() + "抢到车位");                TimeUnit.SECONDS.sleep(2);                System.out.println(Thread.currentThread().getName() + "离开车位");            } catch (InterruptedException e) {                e.printStackTrace();            } finally {                semaphore.release();            }        }, String.valueOf(i)).start();    }}

运行结果显示,前三线程成功抢到车位,后续线程会依次等待进入。


这些同步机制在多线程开发中的应用场景各有不同。选择合适的工具依赖于具体任务需求,了解它们的工作原理和使用方法是成功应用的关键。

转载地址:http://jyhjz.baihongyu.com/

你可能感兴趣的文章
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
netsh advfirewall
查看>>
Netty WebSocket客户端
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>